
A Universal Configuration File Format for FreeBSD – By: Allan Jude

Abstract
As the deployment of servers and 
applications becomes more transient, 
the practices of system administrators 
have needed to adapt to be more agile.
Most system administrators no longer 
edit the majority of configuration files 
by hand with a text editor, they use 
automation and configuration 
management tools like puppet, 
saltstack, ansible, and the like. Many 
utilities and daemons in the FreeBSD 
base system use their own custom 
configuration file format. While these 
various different formats are usually 
accompanied by man pages, they do 
not lend themselves to automation or 
programmatic editing. Space and tab 
delimited files make it harder to extract
a specific value, and difficult to edit 
that value in place, whereas nested 
key-value pairs are easier to read, and 
are easily addressed using libUCLs 
dotted notation. To solve this, I 
propose teaching the various utilities 
and daemons in the FreeBSD base 
system to speak UCL – the Universal 
Config Language, as implemented by 
libucl. In addition, I propose adding 
two small tools to the base system to 
make the administration of such config 
files easier for humans and automated 
scripts.

1. Introduction
UCL (Universal Config Language) is an 
effort to define a modern configuration 
syntax and implement a library to 
parse it, that can be reused by many 
different applications to simplify 
administration. Inspired by the NGINX 

and bind syntax, with elements 
borrowed from JSON, UCL strives to 
strike a balance between human
writability, machine readability, and 
compatibility with existing formats. 
libUCL can read UCL, JSON, and YAML, 
parse them into objects that can be 
read or manipulated, then emit the 
resulting objects back out in any of the
three formats.

2. Advantages of UCL
There are a number of reasons to use 
UCL over existing formats like JSON. 
The biggest drawback to JSON as a 
configuration language is the lack of 
support for inline comments. UCL 
allows both single line (#) and multi-
line (/* --- */) comments, has a more 
forgiving syntax and includes useful 
syntax sugar including:

• Optional quoting (foo = bar; is 
valid, unlike in JSON)

• Optional comma separation 
(items in an array do not need to
be separated by commas)

• Optional trailing comma (after 
the last element in an array, 
which is not allowed in JSON, 
increasing the 'diff' when 
additional items are added to the
array)

• Can use key = value; or key: 
value;



A Universal Configuration File Format for FreeBSD – By: Allan Jude

• useful suffixes: k (*1000), kb 
(*1024), s (second), min 
(minute), d (day), etc

• Multiple Boolean expressions: 
yes/no, true/false, or on/off

• It is still possible to treat 
numbers and booleans as strings 
by enclosing them in double 
quotes.

• Ability to include files (optionally 
files matching a glob pattern, or 
remote files with secure 
signature checking)

[Figure 1 – An example UCL config file]

3. Considerations for 
Adopting UCL

Adopting UCL for various utilities will 
allow much more flexibility in the 
configuration. Traditionally, utilities like
newsyslog read from a single 
configuration file 
(/etc/newsyslog.conf). This file is 

shipped as part of the base system 
pre-populated with a number of 
defaults, rotating the logs generated by
the basesystem. Recently, newsyslog 
was extended to also read additional 
config files from /etc/newsyslog.d/ 

and /usr/local/etc/newsyslog.d/. 

This allows newly installed ports, like 
NGINX, to automatically deploy an 
additional fragment of configuration 
that will rotate the log files that will be 
created. This helps a great deal, but 
still poses a problem when the 

administrator wants to change a value 
in the default configuration file. Care 
will have to be taken when the system 
is next upgraded to ensure the change 
is not lost. libUCL provides two 
important features that allow us to 
better solve this problem. The first is a 
more flexible include system, and the 
second is a 'priorities' system. When 
conflicting keys are defined in an 
included file, the priorities system 
decides which key wins. If the newly 
included file has a higher priority, it is 
merged with the existing object, 
overwriting any conflicting values. If 
newsyslog were converted to UCL, the 
default newsyslog.conf that ships with 
the base system could be moved to 
/etc/default, and contain those default 
entries. Then /etc/newsyslog.conf (plus
/etc/newsyslog.conf.d/ and 
/usr/local/etc/newsyslog.conf.d/) with 
sequentially higher priorities. Now if 
the administrator wants to override the
default number of previous 
/var/log/messages files that are 
retained they can add an entry to one 
of those configuration files that defines 
only the 'count' parameter. The 
resulting configuration will be the keys 
inherited from the default and the 
count overridden by the higher priority 
config file. Each entry will also include 
an 'enabled' flag, which can be 
switched off in a subsequent 
configuration file, effectively deleting 
the default entry, but without having to
resort to editing the default file that 



A Universal Configuration File Format for FreeBSD – By: Allan Jude

ships with the base system. [Figure 2 
and 3 – examples of the 
newsyslog.conf converted to UCL, and 
a fragment overriding one of the 
default configuration options]

This introduces a new challenge, 
because the configuration of newsyslog
can now be scattered across multiple 
files, and multiple directories full of 
additional files, administrators need a 
tool to view the 'effective' 
configuration. Something along the 
lines of Samba's testparm, which 
parses the defaults and each of the 
configuration fragments, and outputs 
the final configuration as it will be 
viewed by the utility that is actually 
using the resulting configuration. In 
addition, this tool can apply libUCLs 
schema validation rules, allowing it to 
check the config file for general syntax 
errors, but also for the structure and 
validity imposed by the utility that will 
consume the config file. This can be 
used by the startup script to validate 
the configuration before stopping a 
running daemon when a restart or 
reload has been requested.

4. Using UCL
The other tool required to actually 
make UCL a useful configuration 
language is the ability to easily parse, 
extract fragments and values, and to 
change them programmatically. To this

end, I have developed uclcmd, a 
command line interface to libUCL. In 
addition to making is easy for shell 
scripts to parse UCL, extract individual 
keys, loop over arrays, etc., it also 
allows for the scripted modification of a
UCL config file.

[Figure 4 – example UCL config file, 
extracting a value, and looping over an
array] [Figure 5 – modifying a UCL 
config file by merging an object 
containing only a subset of the keys]

5. The Transition
Changing the configuration format of 
the utilities in the base system will be a
large undertaking, and introduce 
obvious issues with upgrading systems 
in place. To mitigate this, all utilities 
will retain their ability to parse their 
original config format. Only when a 
config file contains a UCL sentinel on 
the first line, something like: 
“#freebsducl1.0” will the file be parsed 
as UCL. This allow allows for the 
structure of the file to be changed in 
the future with less hassle, while 
maintaining the backwards 
compatibility.

6. Additional 
Considerations

Many utilities are growing support for 
libxo, which allows them to output data



A Universal Configuration File Format for FreeBSD – By: Allan Jude

in various formats including JSON. 
Since libUCL can both input and output
JSON, the command line tools provided
by this project will have numerous 
other uses as well. [Figure 6 – wc 
output in JSON, extract a specific value
with uclcmd]

7. Target
There are a number of tools high on 
my priority list for conversion, these 
include:

• newsyslog
• crontab
• iscsi / ctld
• autofs
• freebsd-update
• portsnap

The other goal of the project is to 
convince more 3rd party applications to 
switch to libUCL, to make the 
ecosystem and the tools more widely 
adopted and therefore more useful.

Additionally, I am working on a puppet 
module that uses the 'resultant 
configuration' tool to compare the 
current configuration to that desired by
the puppet manifest, and then uses 
uclcmd to apply the required changes 
to a config fragment. Similar example 
implementations for other automation 
tools are also on the road map.

8. Implementation
The first utility converted to using 
libUCL was newsyslog. The original 
configuration syntax left much to be 
desired. A mix of spaces and tabs 
delimit the fields, there are too many 
fields, so the content wraps on a 
standard 80x24 terminal, and the 
second to last optional field can have 
two entirely different meanings. The 
flags field, is made up of a series of 
individual letters, that are hard for a 
user to understand at a glance. 

[Figure 7 – Old newsyslog.conf]

The new syntax is much easier to read,
less repetitive, and can be understood 
without knowing the meanings of 
magic letters. The flags field is 
replaced by a series of boolean values 
such as: binary = yes; and create =

yes;, and compress = xz; or 

compress = gzip; innately eliminates 

the possibility of conflicting flags. The 
path_to_pid_cmd_file field is 

replaced with two separate keys, and 
signal_number can take an integer or 

a symbolic name.

[Figure 8 – new newsyslog.conf]

The implementation in newsyslog is 
quite simple, in the function 
parse_file() before the config file is 

read, I read the first line of the file, 
and check it for the sentinel 
“#freebsducl1.0”. If the sentinel is 



A Universal Configuration File Format for FreeBSD – By: Allan Jude

found, parsing of the config file is 
passed off to a new parse_ucl() 

function, otherwise, rewind() is called 

on the file, and the normal parsing 
routine continues as before.

[Figure 9 – which config format is this 
file?]

Then it is just a matter of loading the 
internal struct with the correct values, 
applying validation where needed, and 
doing some translation for things like 
the signal number.

[Figure 10 – some example code for 
doing validation]

9. Future Work
• Finish converting more utilities
• Fine the config format and lock it

down for 11.0-RELEASE
• Spread the word and expand 

adoption of libUCL
• Implement uclcmd in more 

config management frameworks


	Abstract
	1. Introduction
	2. Advantages of UCL
	3. Considerations for Adopting UCL
	4. Using UCL
	5. The Transition
	6. Additional Considerations
	7. Target
	9. Future Work

